一.规则及注意事项(LYJD3000,接地电阻测试仪,说明书)
感谢您购买了本公司接地电阻测试仪,在你初次使用该仪器前,为避免发生可能的触电或人身伤害,请一定:详细阅读并严格遵守本手册所列出的规则及注意事项。
任何情况下,使用本仪表应特别注意。
本仪表根据IEC61010规格进行设计、生产、检验。
任何情况下,使用本仪表应特别注意。
测量时,电话等高频信号发生器请勿在仪表旁使用,以免引起误差。
注意本仪表机身的标贴文字及符号。
使用前应确认仪表及附件完好,仪表、测试线绝缘层无破损、无裸露、无断线才能使用。
测量过程中,严禁接触裸露导体及正在测量的回路。
确认导线的连接插头已紧密地插入仪表接口内。
请勿在测试端与接口之间施加超过600V的交流电压或直流电压,否则可能损坏仪表。
请勿在易燃性场所测量,火花可能引起爆炸。
仪表在使用中,机壳或测试线发生断裂而造成金属外露时,请停止使用。
请勿于高温潮湿,有结露的场所及日光直射下长时间放置和存放仪表。
更换电池时,请确认测试线已移离仪表,仪表处于关机状态。
仪表显示电池电压低符号“",应及时更换电池。
注意本仪表所规定的测量范围及使用环境。
使用、拆卸、校准、维修本仪表,必须由有授权资格的人员操作。
由于本仪表原因,继续使用会带来危险时,应立即停止使用,并马上封存,由有授权资格的机构处理。
仪表及手册中的“"警告标志,使用者必须严格依照本手册内容进行操作。
二、简介(LYJD3000,接地电阻测试仪,说明书)
接地电阻测试仪又名四线接地测试仪、精密接地电阻测试仪等是检验测量接地电阻常用仪表的常用仪表,采用了超大LCD灰白屏背光显示和微处理机技术,满足二、三、四线测试电阻和土壤电阻率要求。适用于电信、电力、气象、机房、油田、电力配电线路、铁塔输电线路、加油站、工厂接地网、避雷针等。仪表测试精准、快速、简捷、稳定可靠等特点。
接地电阻测试仪由微处理器控制,可自动检测各接口连接状况及地网的干扰电压、干扰频率,并且具测试辅助接地极电阻值功能。同时存储500组数据,电阻测量范围:0.01Ω~30.00kΩ,接地电压范围:0.01~600V。
三.量程及精度(LYJD3000,接地电阻测试仪,说明书)
测量功能 | 测量范围 | 精度 | 分辨率 |
接地电阻 (R) | 0.00Ω~30.00Ω | ±2%rdg±5dgt (注1) | 0.01Ω |
30.0Ω~300.0Ω | ±2%rdg±3dgt | 0.1Ω | |
300Ω~3000Ω | ±2%rdg±3dgt | 1Ω | |
3.00kΩ~30.00kΩ | ±2%rdg±3dgt | 10Ω | |
土壤电阻率 (ρ)
| 0.00Ωm~99.99Ωm | ρ=2πaR (注2) | 0.01Ωm |
100.0Ωm~999.9Ωm | 0.1Ωm | ||
1000Ωm~9999Ωm | 1Ωm | ||
10.00kΩm~99.99kΩm | 10Ωm | ||
100.0kΩm~999.9kΩm | 100Ωm | ||
1000kΩm~9999kΩm | 1kΩm | ||
接地电压 | AC 0.00~600V | ±2%rdg±3dgt | 0.01V |
注:1. 基准条件:Rh Rs<100Ω时的精度。
工作条件:Rh max=3kΩ+100R<50kΩ;Rs max=3kΩ+100R<50kΩ
2.取决于R的测量精度而定,π=3.14, a:1 m~100m;
四.技术规格(LYJD3000,接地电阻测试仪,说明书)
功 能 | 二三四线测量接地电阻、土壤电阻率; 接地电压、交流电压测量 |
环境温度湿度 | 23℃±5℃,75%rh以下 |
电 源 | DC 9V 6节LR14干电池连续待机100小时以上 |
干扰电压 | <20V(应避免) |
干扰电流 | <2A(应避免) |
测R时电极间距 | a>5d |
测ρ时电极间距 | a>20h |
辅助接地电阻值 | 基准条件<100Ω,工作条件<5kΩ |
量 程 | 接地电阻:0.00Ω~30.00kΩ |
土壤电阻率:0.00Ωm~9999kΩm | |
接地电压:0.00V~600.0V | |
测量方式 | 精密4线、3线法测量、简易2线测量接地电阻 |
测量方法 | 接地电阻:额定电流变极法 土壤电阻率:四极法 接地电压:平均值整流(S-ES接口间) |
测试频率 | 128Hz |
短路测试电流 | AC >20mA(正弦波) |
开路测试电压 | AC 28V max |
电极间距范围 | 可设定1m~100m |
换 档 | 接地电阻:0.00Ω~30.00kΩ全自动换档 |
土壤电阻率:0.00Ωm~9000kΩm全自动换档 | |
背 光 | 可控灰白色背光,适合昏暗场所使用 |
显示模式 | 4位超大LCD显示,灰白色背光 |
测量指示 | 测量中LED闪烁 |
LCD尺寸 | 111mm×68mm |
LCD显示域 | 108mm×65mm |
仪表尺寸 | 长宽高:240mm×188mm×85mm |
标准测试线 | 4条:红色15m,黑色15m,黄色10m,绿色10m各1条 |
简易测试线 | 2条:黄色1.5m,绿色1.5m各1条 |
辅助接地棒 | 4根 |
测量时间 | 对地电压:约3次/秒 |
接地电阻、土壤电阻率:约7秒/次 | |
线路电压 | AC600V以下测量(接地电压测量功能不能用于测量商用电) |
数据存储 | 500组,“MEM"存储指示,显示“FULL"符号表示存储已满 |
数据查阅 | 查阅数据时“MR"符号指示 |
溢出显示 | 超量程溢出时“OL"符号指示 |
报警功能 | 测量值超过报警设定值时发出报警提示 |
电池电压 | 电池电压低符号显示 |
自动关机 | “APO"指示,开机15分钟后自动关机 |
功 耗 | 待机: 约40mA(背光关闭) |
开机开背光:约43mA | |
测量:约75mA(背光关闭) | |
质 量 | 仪表: 1280g(含电池) |
测试线:1300g | |
辅助接地棒: 720g(4根) | |
工作温湿度 | -10℃~40℃;80%rh以下 |
存放温湿度 | -20℃~60℃;70%rh以下 |
过载保护 | 测量接地电阻:H-E、S-ES各端口间AC 280V/3秒 |
绝缘电阻 | 20MΩ以上(电路与外壳之间500V) |
耐 压 | AC 3700V/rms(电路与外壳之间) |
电磁特性 | IEC61326(EMC) |
适合安规 | IEC61010-1(CAT Ⅲ 300V、CAT IV 150V、污染度2); IEC61010-031; IEC61557-1(接地电阻); IEC61557-5(土壤电阻率); JJG 366-2004。 |
五.结构(LYJD3000,接地电阻测试仪,说明书)
1. LCD 2. H接口:电流极 3. S接口:电压极
4. ES接口:辅助接地极 5.E接口:接地极 6. 功能按键
7. 档位选择键 8. 测试按键 9. 鳄鱼夹
10.测试线 11. 接地棒
12. 简易测试线 13.简易测试线短接头
六.测量原理
1.对地电压测量采用平均值整流法。
2.接地电阻测量采用额定电流变极法,即在测量对象E接地极和H电流极之间流动交流额定电流I,求取E接地极和S电压极的电位差V,并根据公式R=V/I计算接地电阻值R。为了保证测试的精度,设计了四线法,增加ES辅助地极,实际测试时ES与E夹在接地体的同一点上。四线法测试能消除被测接地体、辅助接地棒、测试夹、仪表输入接口表面之间的接触电阻(通常有污垢或生锈)对测量的影响,能消除线阻对测量的影响,更精密。
3.其工作误差(B)是额定工作条件内所得误差,由使用仪表存在的固有误差(A)和变动误差(Ei)计算得出。
A: 固有误差 E2:电源电压变化产生的变动
E3:温度变化产生的变动 E4:干扰电压变化产生的变动
E5:接触电极电阻产生的变动
4.土壤电阻率(ρ)测量采用4极法(温纳法):E接地极与H电流极间流动交流电流I,求S电压极与ES辅助地极间的电位差V,电位差V除以交流电流I得到接地电阻值R,电极间隔距离为a(m),根据公式ρ=2πaR(Ωm)得出土壤电阻率的值,H-S的间距与S-ES的间距相等时(都为a)即为温纳法。为了计算方便,请让电极间距a远大于埋设深度h,一般应满足a>20h,见下图。
我国配电网建设长期滞后于输电网,两大电网投资有望“十四五"末期将向配网倾斜。在以火电、水电等可控电源主体的传统电力系统中,电网投资主要集中在主干通道建设,电网互联范围持续扩大,电压等级不断提高。但长期以来都忽略了配电网的投资,我国配电网在电网通道、可靠性、配电自动化、配网智能化等方面亟需提高。
分布式光伏、储能设备与电动汽车等新型配网元件大规模加入对配网的承载和调配带来较大压力。2022年我国新增分布式光伏并网容量51.11MW,累计并网157.62MW;全国充电基础设施累计数量达到521.0万台,同比增加99.08%,间歇性分布式可再生能源接入以及电动汽车无序充电使得源荷两端波动幅度同时加剧;分布式光伏、储能设备以及电动汽车V2G接入配电网向上级电网倒送功率易造成配电变压器过载;住宅、停车场、充电站等集中式充电桩数量增加对区域配电变压器容量提出更高要求;配电网容量与配电网电压等级正向相关,城市地区人口密集,配电站占地面积受限,配电网升压扩容有望成为未来趋势。国家电网“十四五"规划配网投资超过1.2万亿,占电网建设总投资的60%以上。南方电网“十四五"规划将配电网建设列入工作重点,规划投资达到3,200亿元,几乎占总投资的一半。
近年来,城市中心电力需求已越来越高,很多城市面临着新建大容量变电站或者老变电站扩建增容的窘境。一方面在城市中心已找不到合适的空间来建设,同时还面临着周边居民“投诉"的风险,其建设周期长、审批手续复杂。另一方面,由于新能源汽车普及率进一步提高,很多老小区“一桩难求",电力进不去,也出不来,小区变电站急需增容。将现有变电站进一步小型化、模块化、入地可有效解决以上难题。智慧模块化变电站建成投运后不仅将释放被传统变电站占用的大量宝贵土地资源,减少敷设,节约成本,还有助于持续优化区域营商环境,助力充电桩、数据中心等新基建建设。此外,智慧模块化变电站还广泛运用于光伏、风电、储能等新能源领域,具有广阔的市场空间与发展前景。
上海来扬电气转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。